Gamma ($\Gamma$) distribution,伽瑪分布
在一個滿足poisson過程實驗,$X(r.v.)$為直到$\alpha$次成功之時間。每單位時間內成功平均次數$\lambda$。(每平均\beta時間成功1次)
$\alpha >0$ $\lambda>0$
$\Gamma(\alpha,\lambda)=f_X(x)=\left\{\begin{array}{l}\cfrac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}\ \ &,0<x<\infty \\0\ \ &,o.w \end{array}\right.$
$\alpha >0$ $\beta>0$
$\Gamma(\alpha,\beta)=f_X(x)=\left\{\begin{array}{l}\cfrac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}\ \ &,0<x<\infty \\0\ \ &,o.w \end{array}\right.$
E(X),V(X)
$E(X)=\cfrac{\alpha}{\lambda}=\alpha \beta$
$V(X)=\cfrac{\alpha^2}{\lambda}=\alpha \beta^2$
m.g.f.
$M(t)=\cfrac{1}{({1-\beta })^{\alpha}}$, $t<\cfrac{1}{\beta}$
伽瑪分配和卡方分配隨機變數之變數變換
若$X\sim \Gamma(\alpha,\lambda) \implies Y=2\lambda X\sim \chi^2_{2\alpha}$
若 $X\sim \chi^2_r \implies Y=\cfrac{aX}{b}\sim \Gamma(\cfrac{r}{2},\lambda=\cfrac{1}{2 \frac{a}{b}}) $
留言
張貼留言