Discrete uniform distribution,離散型均勻分布
$p(x)=\left\{\begin{array}{l}\cfrac{1}{n}\ \ &,x=0,1,2,\cdots,n \\0\ \ &,o.w \end{array}\right.$
$E(x)=\displaystyle\sum_{x=1}^nx\cfrac{1}{n}=\cfrac{n(n+1)}{2}\cfrac{1}{n}=\cfrac{n+1}{2}$
$E(x^2)=\displaystyle\sum_{x=1}^nx^2\cfrac{1}{n}=\cfrac{n(n+1)(2n+1)}{6}\cfrac{1}{n}=\cfrac{(n+1)(2n+1)}{6}$
$Var(x)=\cfrac{(n+1)(2n+1)}{6}-(\cfrac{n+1}{2})^2=\cfrac{n^2-1}{12}$
留言
張貼留言