Chi-squared ($\chi^2$) distribution,卡方分布
$\Gamma(\frac{r}{2},2)$
$f(x)=\left\{\begin{array}{l} \cfrac{1}{\Gamma(\cfrac{r}{2})2^{(\frac{r}{2})}}x^{(\frac{r}{2}-1)}e^{(\frac{-x}{2})}\ \ &,0<x<\infty\\0\ \ &,o.w\end{array}\right.$
$M(t)=(1-2t)^{\frac{-r}{2}}$
$Z_1,Z_2,\cdots,Z_n$ $\stackrel{ iid}{\sim}\ N(0,1)$ $\implies$ $X=\displaystyle\sum_{i=1}^{n}Z_i^2\ \sim \chi^2(n)$
$E(X)=n$,$Var(X)=2n$
$\mu$已知,$\cfrac{nS^2}{\sigma^2}\ \sim \chi^2(n)$,$\mu$未知,
用$\overline{X}$取代,$\cfrac{(n-1)S^2}{\sigma^2}\ \sim \chi^2(n-1)$
證:
設 $\cfrac{X_i-\mu}{\sigma}\ \sim\ N(0,1)$ $\implies$ $\cfrac{(X_i-\mu)^2}{\sigma^2}\ \sim \chi^2(1)$ $\implies$ $\displaystyle\sum_{i=1}^{n}\cfrac{(X_i-\mu)^2}{\sigma^2}=\cfrac{(n-1)S^2}{\sigma^2}\ \sim\chi^2(n)$
留言
張貼留言