(統計)(機率論) 先贏問題
- 取得連結
- X
- 以電子郵件傳送
- 其他應用程式
1.甲乙丙三人按順序(甲->乙->丙)投擲一公正硬幣,先出現正面者贏,試問甲、乙、丙獲勝機率為何?
甲贏: 正 ,反反反正,反反反 反反反正,$\cdots$。
乙贏: 反正 ,反反反反正,反反反 反反反 反正,$\cdots$。
丙贏: 反反正 ,反反反反反正,反反反 反反反 反反正,$\cdots$。
$P(甲贏)=\cfrac{1}{2}+(\cfrac{1}{2})^3\times(\cfrac{1}{2})+(\cfrac{1}{2})^6\times(\cfrac{1}{2}) \cdots=\cfrac{1}{2}\times\cfrac{1}{1-(\cfrac{1}{2})^3}=\cfrac{4}{7}$
$P(乙贏)=\cfrac{1}{2}\times\cfrac{1}{2}+(\cfrac{1}{2})^4\times(\cfrac{1}{2})+(\cfrac{1}{2})^7\times(\cfrac{1}{2}) \cdots=\cfrac{1}{2}\times\cfrac{\cfrac{1}{2}}{1-(\cfrac{1}{2})^3}=\cfrac{2}{7}$
$P(丙贏)=(\cfrac{1}{2})^2\times\cfrac{1}{2}+(\cfrac{1}{2})^5\times\cfrac{1}{2}+(\cfrac{1}{2})^8\times\cfrac{1}{2}=\cfrac{1}{2}\times\cfrac{(\cfrac{1}{2})^2}{1-(\cfrac{1}{2})^3}=\cfrac{1}{7}$
2.重複投擲兩個均勻骰子,若出現點數和為8,則甲贏,若先出現點數和為10,則乙贏。當比賽出現勝負時,甲乙兩人贏的機率為何?
留言
張貼留言