偏態係數(skewness coefficinet)
$\alpha_1=\cfrac{\frac{\displaystyle\sum_{i=1}^{N}(X_i-\mu)^3}{N}}{\sigma^3}$
$\alpha_1= $$\left\{
\begin{array}{c}
>0,右偏 \\ =0,對稱 \\ <0,左偏
\end{array}
\right. $
峰態係數(kurtosis coefficinet)
$\alpha_2=\cfrac{\frac{\displaystyle\sum_{i=1}^{N}(X_i-\mu)^4}{N}}{\sigma^4}$
$\alpha_2= $$\left\{
\begin{array}{c}
>3,高峽峰 \\ =0,常態峰 \\ <3,低闊峰
\end{array}
\right. $
特例:t分配為低闊峰,峰態係數>3
留言
張貼留言